Chapitre 9 : Équations différentielles linéaires

Table des matières

1	Gén	néralités sur les équations différentielles linéaires	2
	1.1	Définitions	2
	1.2	Structure de l'ensemble des solutions	2
	1.3	Généralités sur les solutions de l'équation homogène	3
	1.4	Recherche de solutions particulières	3
2	Équ	ations différentielles linéaires d'ordre 1	4
	2.1	Résolution de l'équation homogène	4
	2.2	Recherche d'une solution particulière	4
	2.3	Problème de Cauchy	5
	2.4	Équations non normalisées et recollements	5
3	Équations différentielles linéaires d'ordre 2 à coefficients constants		
	3.1	Résolution de l'équation homogène	6
		3.1.1 Solutions complexes de l'équation homogène	6
		3.1.2 Solutions réelles de l'équation homogène	7
	3.2	Recherche d'une solution particulière	7
	3.3	Problème de Cauchy	7
4	Que	elques équations issues de la physique	8
	4.1	Circuit RC	8
	4.2	Oscillateur harmonique non amorti (électrique ou mécanique)	8
	4.3		10
	4.4		11
	4.5		11

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Généralités sur les équations différentielles linéaires

1.1 Définitions

Définition 1.1 (équation différentielle linéaire)

Soit $n \in \mathbb{N}^*$, et soit I un intervalle non trivial.

Une équation différentielle linéaire d'ordre n sur I est une équation du type :

$$(E): \sum_{k=0}^{n} a_k(x)y^{(k)} = c(x)$$

où a_0, \ldots, a_n et c sont des fonctions de I dans \mathbb{K} , et a_n n'est pas la fonction nulle.

Ses solutions sont les fonctions $y \in \mathcal{D}^n(I; \mathbb{K})$ telles que $\forall x \in I, \sum_{k=0}^n a_k(x) y^{(k)}(x) = c(x)$.

L'équation homogène (ou sans second membre) associée à (E) est

$$(E_H): \sum_{k=0}^{n} a_k(x)y^{(k)} = 0.$$

- On dit que l'équation est à coefficients constants lorsque les fonctions a_k sont des constantes (on écrit alors a_k au lieu de $a_k(x)$).
- On dit que l'équation est <u>normalisée</u> lorsque la fonction a_n est constante à 1.

Remarque : Lorsque la fonction a_n ne s'annule pas sur I, on peut se ramener à une équation normalisée en divisant les deux membres de l'équation par $a_n(x)$.

Exemple 1.2: L'équation $(E): y^{(3)} + \sin(x)y' + y = e^x$ est une équation différentielle linéaire d'ordre 3 sur \mathbb{R} .

1.2 Structure de l'ensemble des solutions

Théorème 1.3 (structure de l'ensemble des solutions d'une EDL)

Soit $n \in \mathbb{N}^*$, et soit I un intervalle non trivial.

On considère une équation différentielle linéaire d'ordre n sur I, de la forme

$$(E): \sum_{k=0}^{n} a_k(x)y^{(k)} = c(x),$$

et on note (E_H) l'équation homogène associée.

Si y_p est une solution particulière de (E), alors l'ensemble S des solutions de (E) s'écrit

$$S = \{y_p + y_H / y_H \text{ solution de } (E_H)\}.$$

Remarque (condition suffisante d'existence de solution) :

Si toutes les fonctions a_k et c sont continues, et si la fonction a_n ne s'annule pas sur I (ceci est par exemple le cas lorsque l'équation est sous forme normalisée), alors l'équation (E) admet au moins une solution y_0 (résultat admis).

Méthode: Pour résoudre une équation différentielle linéaire:

- 1. on résout l'équation homogène associée;
- 2. on cherche une solution particulière;
- 3. on en déduit l'ensemble des solutions.

1.3 Généralités sur les solutions de l'équation homogène

Théorème 1.4 (stabilité par combinaison linéaire de l'ensemble des solutions)

Soit $n \in \mathbb{N}^*$, et soit I un intervalle non trivial.

On considère une équation différentielle **linéaire homogène** d'ordre n sur I, de la forme

$$(E_H): \sum_{k=0}^{n} a_k(x)y^{(k)} = 0,$$

et on note S_H l'ensemble de ses solutions.

Alors cet ensemble S_H est stable par combinaison linéaire, c'est-à-dire :

$$\forall y_1, y_2 \in S_H, \forall \lambda_1, \lambda_2 \in \mathbb{K}, \lambda_1 y_1 + \lambda_2 y_2 \in S_H.$$

Remarque: Avec les mêmes notations, la fonction nulle appartient à S_H .

En particulier, l'ensemble des solutions d'une équation différentielle linéaire homogène n'est jamais vide.

Nous verrons comment déterminer explicitement les solutions de l'équation homogène dans deux cas particuliers :

- lorsque n = 1;
- lorsque n=2 et que les coefficients a_k sont constants.

1.4 Recherche de solutions particulières

Théorème 1.5 (principe de superposition)

Soit $n \in \mathbb{N}^*$, et soit I un intervalle non trivial.

On considère une équation différentielle linéaire d'ordre n sur I de la forme

$$(E): \sum_{k=0}^{n} a_k(x)y^{(k)} = c_1(x) + c_2(x).$$

On note
$$(E_1): \sum_{k=0}^{n} a_k(x) y^{(k)} = c_1(x)$$
 et $(E_2): \sum_{k=0}^{n} a_k(x) y^{(k)} = c_2(x)$.

Si y_1 est une solution de (E_1) et y_2 est une solution de (E_2) , alors $y_1 + y_2$ est une solution de (E).

Théorème 1.6 (équation différentielle linéaire à coefficients réels et second membre complexe)

Soit $n \in \mathbb{N}^*$, et soit I un intervalle non trivial.

On considère une équation différentielle linéaire d'ordre n sur I de la forme

$$(\underline{E}): \sum_{k=0}^{n} a_k(x) y^{(k)} = c(x),$$

avec la fonction c à valeurs complexes, et les fonctions a_k à valeurs réelles.

Si y_p est une solution complexe de (\underline{E}) , alors :

- $\Re \mathfrak{e}(\underline{y_p})$ est une solution réelle de $\sum_{k=0}^n a_k(x) y^{(k)} = \Re \mathfrak{e}(c(x))$;
- $\mathfrak{Im}(\underline{y_p})$ est une solution réelle de $\sum_{k=0}^n a_k(x)y^{(k)} = \mathfrak{Im}(c(x))$.

2 Équations différentielles linéaires d'ordre 1

On s'intéresse dans un premier temps à des équations normalisées, donc de la forme

$$(E): y' + a(x)y = c(x),$$

avec a et c des fonctions définies sur un intervalle non trivial I.

2.1 Résolution de l'équation homogène

Théorème 2.1 (solutions d'une équation différentielle linéaire homogène d'ordre 1)

Soit I un intervalle non trivial.

On considère une équation différentielle linéaire homogène d'ordre 1 sur I, de la forme

$$(E_H): y' + a(x)y = 0,$$

où $a \in \mathscr{C}(I; \mathbb{K})$.

Soit A une primitive de la fonction a.

Alors l'ensemble S_H des solutions de (E_H) est :

$$S_H = \left\{ x \mapsto \lambda \, \mathbf{e}^{-A(x)} / \lambda \in \mathbb{K} \right\}.$$

Exemple 2.2: Résoudre l'équation différentielle $(E): y' + \operatorname{ch}(x)y = 0$ sur \mathbb{R} .

${\bf Corollaire~2.3~(solutions~d'une~EDL~homog\`ene~d'ordre~1~\`a~coefficients~constants)}$

On considère une équation différentielle linéaire homogène d'ordre 1 à coefficients constants (sur \mathbb{R}), de la forme

$$(E_H): y' + ay = 0,$$

où $a \in \mathbb{K}$.

Alors l'ensemble S_H des solutions de (E_H) (sur \mathbb{R}) est :

$$S_H = \{ x \mapsto \lambda \, \mathbf{e}^{-ax} / \lambda \in \mathbb{K} \}.$$

2.2 Recherche d'une solution particulière

Cas particuliers : Lorsqu'on a une équation différentielle linéaire d'ordre 1 à coefficients constants

$$(E): y' + ay = c(x),$$

on peut rechercher une solution particulière y_0 d'une forme similaire au second membre.

Plus exactement :

- 1. Si le second membre est constant, on va chercher une solution constante.
- 2. Si le second membre est polynomial, on va chercher une solution polynomiale du même degré (sauf si a = 0, auquel cas chercher une solution revient à calculer une primitive).
- 3. Si le second membre est de la forme $A e^{rx}$, on va chercher une solution de la forme :
 - $C e^{rx}$, si r n'est pas solution de l'équation caractéristique r + a = 0;
 - $Cx e^{rx}$ sinon.

On peut aussi:

- utiliser le principe de superposition, lorsque le second membre est une somme;
- « passer en complexe », lorsqu'on a des cosinus ou des sinus.

Exemple 2.4 : Résoudre l'équation différentielle $(E): y'+y=x^2+\operatorname{ch}(x)+\mathbf{e}^x\cos(x)$ sur \mathbb{R} .

Cas général: On utilise la méthode de variation de la constante:

Si on a résolu l'équation homogène (E_H) et trouvé comme ensemble de solutions $\{x \mapsto \lambda \mathbf{e}^{-A(x)} / \lambda \in \mathbb{K}\}$, on recherche une solution particulière y_p de (E) sous la forme $y_p : x \mapsto \lambda(x) \mathbf{e}^{-A(x)}$, avec $\lambda \in \mathcal{D}(I; \mathbb{K})$.

Exemple 2.5 : Résoudre l'équation différentielle $(E): xy'-y=x^2\sin(x)$ sur \mathbb{R}_+^* .

Remarque : L'application de cette méthode montre que lorsque les fonctions a et c sont continues, il existe toujours des solutions pour l'équation normalisée.

2.3 Problème de Cauchy

Définition 2.6 (problème de Cauchy d'ordre 1)

Un problème de Cauchy d'ordre 1 est la donnée :

- 1. d'une équation différentielle linéaire d'ordre 1 **normalisée** sur un **intervalle** I non trivial, avec les coefficients et le second membre qui sont des fonctions continues;
- 2. d'une condition initiale du type $y(x_0) = y_0$, où $x_0 \in I$ et $y_0 \in \mathbb{K}$ sont fixés.

On appelle solution d'un tel problème de Cauchy une fonction $y \in \mathcal{D}(I; \mathbb{K})$ qui est solution de l'équation différentielle et qui vérifie la condition initiale.

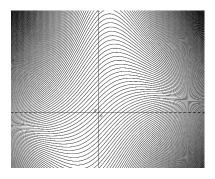
Théorème 2.7 (existence et unicité de la solution d'un problème de Cauchy d'ordre 1)

Un problème de Cauchy d'ordre 1 admet une unique solution.

Exemple 2.8 : Déterminer l'unique solution de $(E): xy'-y=x^2\sin(x)$ sur \mathbb{R}_+^* qui s'annulent en π .

Remarque: Les graphes des solutions d'une équation différentielle linéaire d'ordre 1 normalisé sur un intervalle partitionnent donc le plan. En particulier, deux courbes différentes ne se rencontrent jamais et par tout point du plan passe une unique courbe.

On a représenté ci-contre les graphes de quelques solutions de l'équation $(E): (1+x^2)y' + 2xy = 1$.



2.4 Équations non normalisées et recollements

Pour résoudre une équation non normalisée sur un intervalle non trivial I, du type

$$(E): a_1(x)y' + a_0(x)y = c(x),$$

- 1. on commence par résoudre (E) sur chacun des intervalles I_k où la fonction a_1 ne s'annule pas, en se ramenant à une équation normalisée;
- 2. puis on étudie les raccordements possibles entre les différents intervalles I_k . On utilise pour ceci le fait qu'une fonction $y: I \to \mathbb{K}$ est solution de (E) si et seulement si :
 - (a) la restriction de y à chaque intervalle I_k est solution de (E) (ce qui donne la forme possible de y(x) sur chacun de ces intervalles)
 - (b) y est dérivable (donc continue) en chacun des points de raccordement.
 - (c) l'équation est vérifiée en chacun des points de raccordement.

Exemple 2.9 : Résoudre l'équation différentielle $(E): x^2y' - y = 0$ sur \mathbb{R} .

3 Équations différentielles linéaires d'ordre 2 à coefficients constants

On considère des équations différentielles linéaires de la forme :

$$(E): y'' + ay' + by = c(x)$$

avec $(a,b) \in \mathbb{K}^2$, et c une fonction définie sur un intervalle non trivial I.

3.1 Résolution de l'équation homogène

Définition 3.1 (équation caractéristique associée)

On considère une équation différentielle linéaire homogène d'ordre 2 à coefficients constants (sur \mathbb{R}), de la forme

$$(E_H): y'' + ay' + by = 0$$

où a et $b \in \mathbb{K}$.

L'équation caractéristique associée à (E_H) est l'équation du second degré suivante (d'inconnue r):

$$(E_C): r^2 + ar + b = 0$$

Proposition 3.2 (solutions exponentielles de l'équation homogène)

On garde les mêmes hypothèses et notations que ci-dessus.

Pour tout $r \in \mathbb{K}$, la fonction $x \mapsto \mathbf{e}^{rx}$ est solution de (E_H) si et seulement si r est solution de (E_C) .

3.1.1 Solutions complexes de l'équation homogène

Théorème 3.3 (solutions complexes de l'équation homogène)

On garde les mêmes hypothèses et notations que ci-dessus.

1. <u>Premier cas</u>: l'équation caractéristique (E_C) admet deux solutions complexes distinctes r_1 et r_2 (discriminant non nul).

Alors l'équation homogène (E_H) a pour ensemble de solutions complexes :

$$\{x \mapsto \lambda \mathbf{e}^{r_1 x} + \mu \mathbf{e}^{r_2 x} / (\lambda, \mu) \in \mathbb{C}^2\}.$$

2. Second cas : l'équation caractéristique (E_C) admet une unique solution complexe r_1 (discriminant nul).

Alors l'équation homogène (E_H) a pour ensemble de solutions complexes :

$$\{x \mapsto \lambda \mathbf{e}^{r_1 x} + \mu x \mathbf{e}^{r_1 x} / (\lambda, \mu) \in \mathbb{C}^2\}.$$

Exemple 3.4: Résoudre l'équation différentielle (E): y''-2iy'+(2-4i)y=0 sur $\mathbb R$ dans $\mathbb C$.

3.1.2 Solutions réelles de l'équation homogène

Théorème 3.5 (solutions réelles de l'équation homogène)

On garde les mêmes hypothèses et notations que ci-dessus, en supposant ici que l'équation (E_H) est à coefficients réels $(i.e.\ a,b\in\mathbb{R})$.

(L'équation caractéristique (E_C) est donc une équation du second degré à coefficients réels.)

1. <u>Premier cas</u>: l'équation caractéristique (E_C) admet deux solutions réelles distinctes r_1 et r_2 (discriminant strictement positif).

Alors l'équation homogène (E_H) a pour ensemble de solutions réelles :

$$\{x \mapsto \lambda \mathbf{e}^{r_1 x} + \mu \mathbf{e}^{r_2 x} / (\lambda, \mu) \in \mathbb{R}^2\}.$$

2. <u>Deuxième cas</u>: l'équation caractéristique (E_C) admet une unique solution réelle r_1 (discriminant nul).

Alors l'équation homogène (E_H) a pour ensemble de solutions réelles :

$$\{x \mapsto \lambda \mathbf{e}^{r_1 x} + \mu x \mathbf{e}^{r_1 x} / (\lambda, \mu) \in \mathbb{R}^2\}.$$

3. Troisième cas : l'équation caractéristique (E_C) admet deux solutions complexes conjuguées distinctes $r_1 = \alpha + \mathbf{i} \beta$ et $r_2 = \alpha - \mathbf{i} \beta$, avec α et β réels (discriminant strictement négatif). Alors l'équation homogène (E_H) a pour ensemble de solutions réelles :

$$\{x \mapsto \lambda \mathbf{e}^{\alpha x} \cos(\beta x) + \mu \mathbf{e}^{\alpha x} \sin(\beta x) / (\lambda, \mu) \in \mathbb{R}^2\}.$$

Remarque: Dans le dernier cas, l'ensemble des solutions peut aussi s'écrire sous la forme

$$\{x \mapsto A \mathbf{e}^{\alpha x} \cos(\beta x + \varphi) / (A, \varphi) \in \mathbb{R}^2\}.$$

Exemple 3.6 : Résoudre l'équation différentielle (E): y''-2y'+2y=0 sur $\mathbb R$ dans $\mathbb C$, puis sur $\mathbb R$ dans $\mathbb R$.

3.2 Recherche d'une solution particulière

On ne va chercher une solution particulière que dans des cas particuliers.

Pour ceci, on applique les mêmes principes que pour les équations d'ordre 1 sauf dans le cas où le second membre est de la forme $A e^{rx}$. Dans celui-ci, on va chercher une solution de la forme :

- $C e^{rx}$, si r n'est pas solution de l'équation caractéristique;
- $Cx e^{rx}$ si r est solution simple de l'équation caractéristique;
- $Cx^2 e^{rx}$ si r est solution double de l'équation caractéristique.

Exemple 3.7 : Résoudre l'équation différentielle $(E): y'' - 3y' + 2y = \operatorname{ch}(x)$ sur \mathbb{R} dans \mathbb{R} .

3.3 Problème de Cauchy

Définition 3.8 (problème de Cauchy d'ordre 2)

Un problème de Cauchy d'ordre 2 est la donnée :

- 1. d'une équation différentielle linéaire d'ordre 2 normalisée sur un intervalle I non trivial, avec les coefficients et le second membre qui sont des fonctions continues;
- 2. de **deux** conditions initiales du type $y(x_0) = y_0$ et $y'(x_0) = y_1$, où $x_0 \in I$, y_0 et $y_1 \in \mathbb{K}$ sont fixés.

On appelle solution d'un tel problème de Cauchy une fonction $y \in \mathcal{D}^2(I; \mathbb{K})$ qui est solution de l'équation différentielle et qui vérifie les deux conditions initiales.

On admet qu'un problème de Cauchy d'ordre 2 admet une unique solution.

4 Quelques équations issues de la physique

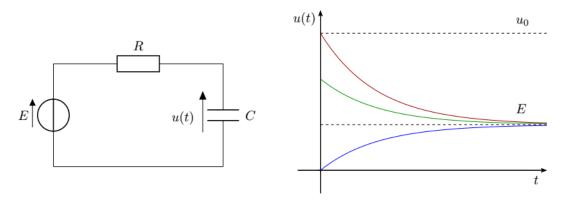
Dans ce paragraphe, nous allons faire une brève étude des solutions de quelques équations différentielles couramment rencontrées en physique.

4.1 Circuit RC

Dans un circuit RC soumis à un échelon de tension E, la tension u(t) aux bornes d'un condensateur est solution de l'équation différentielle d'ordre 1 à coefficients constants :

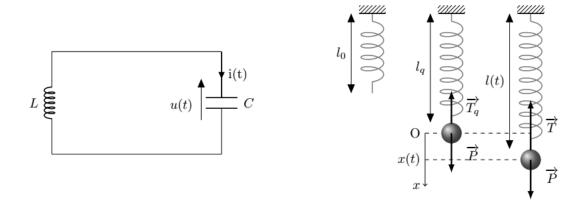
$$u'(t) + \frac{u(t)}{\tau} = \frac{E}{\tau}$$
 où $\tau = RC$ est le temps caractéristique.

Les solutions de cette équation différentielle sont les fonctions de la forme $t \mapsto \lambda \mathbf{e}^{-t/\tau} + E$. En notant u_0 la tension aux bornes du condensateur à t = 0, on obtient $\lambda + E = u_0$ d'où : $u(t) = (u_0 - E) \mathbf{e}^{-t/\tau} + E$. En régime permanent, la tension aux bornes du condensateur est égale à E.



4.2 Oscillateur harmonique non amorti (électrique ou mécanique)

- \bullet Intensité i(t) dans un circuit LC sans résistance.
- Position x(t) d'une masse accrochée à un ressort non amorti pour de petites oscillations.
- Angle $\theta(t)$ d'un pendule simple, pour de petites oscillations et sans frottement.



Un tel système est décrit par une équation différentielle du type :

$$y'' + \omega_0^2 y = 0$$

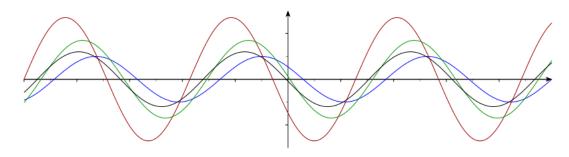
où $\omega_0 > 0$ est la pulsation propre du système.

Les solutions sont les fonctions de la forme :

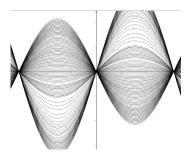
$$y(t) = \lambda \cos(\omega_0 t) + \mu \sin(\omega_0 t) \text{ avec } (\lambda, \mu) \in \mathbb{R}^2.$$

Ces solutions peuvent également s'écrire : $y(t) = A \cos(\omega_0 t - \varphi)$ en posant $A = \sqrt{\lambda^2 + \mu^2}$ et φ un nombre réel tel que : $\cos \varphi = \frac{\lambda}{\sqrt{\lambda^2 + \mu^2}}$ et $\sin \varphi = \frac{\mu}{\sqrt{\lambda^2 + \mu^2}}$.

Remarque : Les solutions d'un tel système sont toutes périodiques de même période $\frac{2\pi}{\omega_0}$. L'amplitude A et la phase φ dépendent des conditions initiales.



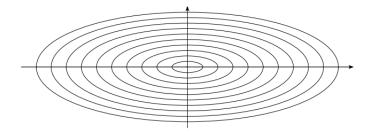
Remarque: Les courbes des différentes solutions d'une équation différentielle linéaire d'ordre 2 peuvent se couper sans que celles-ci soient égales (contrairement à l'ordre 1). Pire : il existe une infinité de solutions de (E) qui vérifient la condition initiale $y(t_0) = y_0$ (une pour chaque valeur de $y'(t_0)$). Quelques solutions de $y'' + \omega_0^2 y = 0$ telles que y(0) = 0 sont représentées cicontre.



Définition 4.1 (Portrait de phase)

Soit $f: I \mapsto \mathbb{R}$ une fonction dérivable sur I. On appelle portrait de phase de f la courbe paramétrée de $\Gamma_f: I \mapsto \mathbb{R}^2$ définie par $\Gamma_f: t \mapsto (f(t), f'(t))$.

On rappelle que les solutions de $y'' + \omega_0^2 y = 0$ sont les fonctions qui ont pour expression : $y(t) = A \cos(\omega_0 t - \varphi)$. On a donc : $y'(t) = -\omega_0 A \sin(\omega_0 t - \varphi)$. En posant X = y(t) et Y = y'(t) on a $X^2 + Y^2 \omega_0^2 = A^2$ qui est l'équation d'une ellipse. Les portraits de phase sont donc des ellipses concentriques :



- On peut affirmer que par tout point (c,d) de \mathbb{R}^2 passe un portrait de phase d'une solution de (E).
- La partie supérieure du plan correspond à des temps t pour lesquels y'(t) > 0, où la fonction y est strictement croissante.
- $\bullet\,$ Lorsque le portrait de phase coupe l'axe des ordonnées, la fonction y s'annule.
- Les portraits de phase de solutions périodiques sont des courbes fermées de \mathbb{R}^2 .

4.3 Oscillateur harmonique amorti (avec terme dissipatif):

- Tension u(t) aux bornes d'un condensateur d'un circuit RLC soumis à un échelon de tension.
- \bullet Position x(t) d'une masse accrochée à un ressort amorti, pour de petites oscillations.
- Angle $\theta(t)$ d'un pendule simple amorti, pour de petites oscillations.

Un tel système est décrit par une équation différentielle du type :

$$(E): y'' + \frac{\omega_0}{Q} y' + \omega_0^2 y = a$$

avec $\omega_0 > 0$ la pulsation propre, Q > 0 le facteur qualité (sans unité) du système et a une constante.

Résolution de l'équation homogène : $(E_H): y'' + \frac{\omega_0}{Q}y' + \omega_0^2y = 0$

On étudie l'équation caractéristique $r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$ qui a pour discriminant $\Delta = 4\omega_0^2 \left(\frac{1}{4Q^2} - 1\right)$.

• Régime apériodique : Lorsque $Q < \frac{1}{2}$, on a $0 < \Delta$, l'équation caractéristique admet deux racines réelles distinctes r_1 et r_2 . Les solutions de (E_H) sont de la forme :

$$y_{\text{trans}}(t) = \lambda \mathbf{e}^{r_1 t} + \mu \mathbf{e}^{r_2 t}$$
.

Ces solutions convergent vers zéro lorsque $t \to +\infty$. En effet, $r_1 < 0$ et $r_2 < 0$ car $r_1r_2 > 0$ et $r_1 + r_1 < 0$.

• Régime critique : Lorsque $Q = \frac{1}{2}$, on a $\Delta = 0$, l'équation caractéristique admet une seule racine réelle qui est $-\omega_0$. Les solutions de (E_H) sont de la forme :

$$y_{\text{trans}}(t) = (\lambda + \mu t) e^{-\omega_0 t}$$

Ces solutions convergent également vers zéro lorsque $t \to +\infty$.

• Régime pseudo-périodique : lorsque $Q > \frac{1}{2}$, on a $\Delta < 0$, l'équation caractéristique admet deux racines complexes conjuguées distinctes $r_1 = \alpha + \mathbf{i}\beta$ et $r_2 = \alpha - \mathbf{i}\beta$, avec α et β réels. Les solutions de (E_H) sont de la forme :

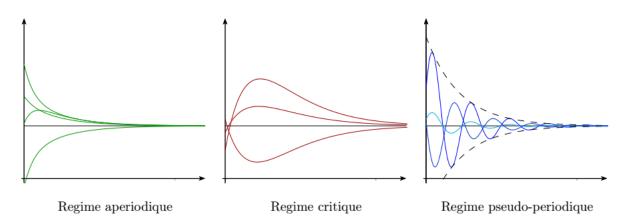
$$y_{\text{trans}}(t) = \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t)$$

que l'on met sous la forme : $y_{\text{trans}}(t) = A \mathbf{e}^{\alpha t} \cos(\beta t + \varphi)$.

Comme $\alpha < 0$, ces solutions convergent vers zéro en oscillant lorsque $t \to +\infty$.

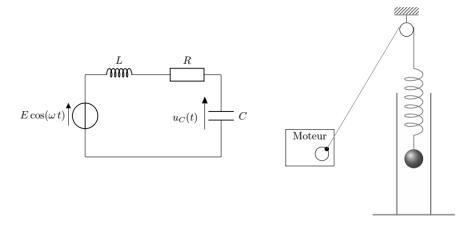
Solution particulière: Il y a une solution particulière constante $y_{per} = \frac{a}{\omega_0^2}$ qui ne dépend pas des conditions initiales (régime permanent).

<u>Conclusion</u>: Le régime transitoire disparaît toujours rapidement et les solutions convergent vers la fonction constante y_{per} du régime permanent.



4.4 Oscillateur harmonique amorti en régime sinusoïdal forcé :

Cette fois, la source impose des oscillations périodiques au système avec une pulsation forcée ω .



Un tel système est décrit par une équation différentielle du type :

$$(E): y'' + \frac{\omega_0}{Q} y' + \omega_0^2 y = a \cos(\omega t)$$

- Les différents régimes transitoires sont les mêmes que précédemment et disparaissent lorsque $t \to +\infty$.
- Le régime permanent est de la forme $y_{\text{per}}(t) = A_{\text{per}} \cos(\omega t + \varphi)$ (solution particulière obtenue en travaillant en complexe). En régime permanent, les solutions oscillent donc avec une période de $\frac{2\pi}{\omega}$.
- L'amplitude $A_{
 m per}$ a pour expression : $A_{
 m per}=\frac{a^2}{(\omega_0^2-\omega^2)^2+\frac{\omega_0^2\,\omega^2}{Q}}.$

Lorsque le facteur qualité Q est grand (donc dans le cas d'un régime transitoire franchement pseudopériodique) et que la pulsation forcée ω de la source est proche de la pulsation propre ω_0 du système, l'amplitude $A_{\rm per}$ devient grande. C'est ce qu'on appelle le *phénomène de résonance*.

4.5 Exemple d'équation différentielle non linéaire en mécanique des fluides (H.P.)

Exemple 4.2 : D'après la mécanique des fluides (que vous étudierez peut-être un jour), la hauteur d'eau h(t) dans un seau d'eau qui se vide par un trou situé au fond du seau est solution de l'équation différentielle :

(E):
$$\begin{cases} h'(t) + 2 q \sqrt{h(t)} = 0 \\ h(0) = H \\ h(T) = 0 \end{cases}$$

avec $q>0,\, H>0$ la hauteur d'eau initiale, T>0 le temps mis par le seau d'eau pour se vider. Les solutions sont les fonctions de la forme :

$$h(t) = \begin{cases} q^2 (T - t)^2 & \text{si } t \in [0, T], \\ 0 & \text{si } t \in [T, +\infty[, t]] \end{cases}$$

où $T = \sqrt{H}q$ dépend de la condition initiale h(0) = H.

